Gold price volatility: A forecasting approach using the Artificial Neural Network-GARCH model
نویسندگان
چکیده
One of the most used methods to forecast price volatility is the generalized autoregressive conditional heteroskedasticity (GARCH) model. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted to improve forecasting models employing a variety of techniques. In this paper, we extend the field of expert systems, forecasting, and model by applying an Artificial Neural Network (ANN) to the GARCH method generating an ANN–GARCH. The hybrid ANN–GARCH model is applied to forecast the gold price volatility (spot and future). The results show an overall improvement in forecasting using the ANN–GARCH as compared to a GARCH method alone. An overall reduction of 25% in the mean average percent error was realized using the ANN–GARCH. The results are realized using the Euro/Dollar and Yen/Dollar exchange rates, the DJI and FTSE stock market indexes, and the oil price return as inputs. We discuss the implications of the study within the context of the discipline as well as practical applications. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Forecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملA Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملModeling Gold Volatility: Realized GARCH Approach
F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 42 شماره
صفحات -
تاریخ انتشار 2015